Deep Sequencing Whole Transcriptome Exploration of the σE Regulon in Neisseria meningitidis

نویسندگان

  • Robert Antonius Gerhardus Huis in 't Veld
  • Antonius Marcellinus Willemsen
  • Antonius Hubertus Cornelis van Kampen
  • Edward John Bradley
  • Frank Baas
  • Yvonne Pannekoek
  • Arie van der Ende
چکیده

Bacteria live in an ever-changing environment and must alter protein expression promptly to adapt to these changes and survive. Specific response genes that are regulated by a subset of alternative σ(70)-like transcription factors have evolved in order to respond to this changing environment. Recently, we have described the existence of a σ(E) regulon including the anti-σ-factor MseR in the obligate human bacterial pathogen Neisseria meningitidis. To unravel the complete σ(E) regulon in N. meningitidis, we sequenced total RNA transcriptional content of wild type meningococci and compared it with that of mseR mutant cells (ΔmseR) in which σ(E) is highly expressed. Eleven coding genes and one non-coding gene were found to be differentially expressed between H44/76 wildtype and H44/76ΔmseR cells. Five of the 6 genes of the σ(E) operon, msrA/msrB, and the gene encoding a pepSY-associated TM helix family protein showed enhanced transcription, whilst aniA encoding a nitrite reductase and nspA encoding the vaccine candidate Neisserial surface protein A showed decreased transcription. Analysis of differential expression in IGRs showed enhanced transcription of a non-coding RNA molecule, identifying a σ(E) dependent small non-coding RNA. Together this constitutes the first complete exploration of an alternative σ-factor regulon in N. meningitidis. The results direct to a relatively small regulon indicative for a strictly defined response consistent with a relatively stable niche, the human throat, where N. meningitidis resides.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of a DNA Aptamer for Screening Neisseria meningitidis Serogroup B by Cell SELEX

Background: Artificial oligonucleotides like DNA or RNA aptamers can be used as biodiagnostic alternatives for antibodies to detect pathogens. Comparing to antibodies, artificial oligonucleotides are produced easily at lower costs and are more stable. Neisseria meningitidis, the causative agent of meningitis, is responsible for about 1% of infections in an epidemic period. Specific DNA aptamers...

متن کامل

The Hfq regulon of Neisseria meningitidis

The conserved RNA-binding protein, Hfq, has multiple regulatory roles within the prokaryotic cell, including promoting stable duplex formation between small RNAs and mRNAs, and thus hfq deletion mutants have pleiotropic phenotypes. Previous proteome and transcriptome studies of Neisseria meningitidis have generated limited insight into differential gene expression due to Hfq loss. In this study...

متن کامل

The zinc-responsive regulon of Neisseria meningitidis comprises 17 genes under control of a Zur element.

Zinc is a bivalent cation essential for bacterial growth and metabolism. The human pathogen Neisseria meningitidis expresses a homologue of the Zinc uptake regulator Zur, which has been postulated to repress the putative zinc uptake protein ZnuD. In this study, we elucidated the transcriptome of meningococci in response to zinc by microarrays and quantitative real-time PCR (qRT-PCR). We identif...

متن کامل

How clonal are Neisseria species? The epidemic clonality model revisited.

The three species Neisseria meningitidis, Neisseria gonorrheae, and Neisseria lactamica are often regarded as highly recombining bacteria. N. meningitidis has been considered a paradigmatic case of the "semiclonal model" or of "epidemic clonality," demonstrating occasional bouts of clonal propagation in an otherwise recombining species. In this model, occasional clonality generates linkage dise...

متن کامل

In silico Homology Modeling and Epitope Prediction of NadA as a Potential Vaccine Candidate in Neisseria meningitidis

Neisseria meningitidis is a facultative pathogen bacterium which is well founded with a number of adhesion molecules to facilitate its colonization in human nasopharynx track. Neisseria meningitidis is a major cause of mortality from sever meningococcal disease and septicemia. The Neisseria meningitidis adhesion, NadA, is a trimeric autotransporter adhesion molecule which is involved in cell ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011